### ***DiNetxify*** ![DiNetxify logo](./img/DiNetxify-logo.png){width=400px} ***DiNetxify*** is an open-source Python package for comprehensive three-dimensional (3D) disease network analysis of large-scale electronic health record (EHR) data. It integrates data harmonization, analysis, and visualization into a user-friendly package to uncover multimorbidity patterns and disease progression pathways. ***DiNetxify*** is optimized for efficiency (capable of handling cohorts of hundreds of thousands of patients within hours on standard hardware) and supports multiple study designs with customizable parameters and parallel computing. ***DiNetxify*** is released under GPL-3.0 license. ![DiNetxify logo](./img/framework.png){width=1200px} ## Installation ***DiNetxify*** requires **Python 3.10+**. Install the latest release from PyPI using pip: ```bash pip install dinetxify ``` ## Source code and issue report Available on Github, [HZcohort/DiNetxify](https://github.com/HZcohort/DiNetxify). Please report bugs and issues there. ## Citation If you use this software in your research, please cite the following papers: 1. [Disease clusters and their genetic determinants following a diagnosis of depression: analyses based on a novel three-dimensional disease network approach](https://www.nature.com/articles/s41380-025-03120-y) ([PMID: 40681841](https://pubmed.ncbi.nlm.nih.gov/40681841/)) ## Contact - **Can Hou**: [houcan@wchscu.cn](mailto:houcan@wchscu.cn) - **Haowen Liu**: [haowenliu81@gmail.com](mailto:haowenliu81@gmail.com) ```{toctree} :maxdepth: 2 :caption: Documentation data_prep data_harm 3d_analysis visual table api log ```